Axes-Based Visualizations with Radial Layouts

Christian Tominski James Abello Heidrun Schumann

ACM Symposium on Applied Computing
Nicosia, Cyprus
15th of March 2004

Outline

- Introduction
- Axes-Based Visualization
 - Interactive Axes
 - Radial Axes Arrangements
- VisAxes Framework
 - Demonstration
- Conclusion & Future Work

Introduction Visualization

- Multivariate data sets are everywhere: business data, scientific data, census data, human health data, etc.
- Data must be analyzed in order to make it valuable
- Visual analysis have proved to be an effective means

Introduction *Motivation*

- Data often inherit a dependency on one dimension of reference
- Task: Depict the dependency of multiple variables on the dimension of reference
- Approaches:
 - Standard techniques like *line charts*
 - + Expressive for depicting this dependency,
 - Difficult to visualize multiple variables

- + Expressive for visualizing multiple variables
- Hard to comprehend dependency for all variables

Idea: Join the efficiency of both approaches

Axes-Based Visualization General Approach and Requirements

- General approach
 - Variables of a data set are mapped to axes
 - Axes are appropriately scaled and arranged on screen

A conceptual distinction of axes design and axes arrangement is necessary

- Requirements
 - Development of general axes-based framework
 - Provide different axes for different visualization tasks and different data types
 - Allow for a direct variable-axis-mapping manipulation
 - Examine expressiveness of different axes arrangements

Axes-Based Visualization Axes Design

- Simple Axis
 - Constitutes a minmax-mapping of a variable
- min max variable range simple axis

- Scroll Axis
 - Sub-range of a
 variable is mapped
 onto the axis

Slider depicts sub-range and
 can be used to interactively adjust the sub-range

Axes-Based Visualization Axes Design

- Focus+Context Axis
 Constitutes a non-linear min-max-mapping
 Focus slider for interactive focus and magnification adjustment
- Hierarchical Axis

or collapsed

Hierarchically organized variables

 like time are represented by a hierarchical variable
 Nodes can be expanded
 visible nodes

TimeWheel

- Motivation: Point out the dimension of reference
- Approach:

Centrally exposed axis representing the dimension of

reference

 Radially arranged axes representing depending variables

Data records are depicted

by line segments

lines connecting time and variable values

Advancing the *TimeWheel*

- Interactive rotation allows "focusing" different variables

- Emphasizing axes in focus
 - Aid users during data exploration and de-clutter the display
 - Axes length adjustment and color-fading

MultiComb

Motivation: Make use of the expressiveness of line charts

Approach:

Arrange plots radially

Each plot represent a depending

variable and the dimension

of reference directly

- Two variants:
 - Plots extending outwards from the central point
 - Plots extending around the central point

Advancing the *MultiComb*

- Use the center of the MultiComb to provide additional information
 - Aggregate view in combination with a scroll axis
 - Aggregated "history" values are mapped to small arcs
 - Spike glyph for easy value comparison
 - Each value of a data record
 is mapped to the length of a spike
 in the spike glyph

Axes-Based Visualizations

Visualization Examples

The Framework VisAxes Architecture

- The presented techniques have been realized in the interactive framework VisAxes
- DataBox, ToolBox and VisAxesWindow are main components of the architecture
- .Net and C# have been used as development environment

The Framework VisAxes Demonstration

Conclusion & Future Work

- Innovative interactive axes for easy data exploration
- New axes arrangements for emphasizing one dimension of reference in a multidimensional data set
- Implementation of the concept in the modular axes-based framework VisAxes
- Future work
 - Automatic variable-axis-mapping (similarity, correlation,...)
 - Extension of the techniques to 3D
 - User tests to prove eligibility of the approach