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Fig. 1. Applying the proposed Two-Step-Mapping to generate scatterplots showing the
same clusters on different display devices in our smart meeting environment.

Abstract. Visual analysis sessions are increasingly conducted in multi-
display environments. However, presenting a data set simultaneously on
heterogenous displays to users is a challenging task. In this paper we pro-
pose a two-step mapping strategy to address this problem. The first map-
ping step applies primary mapping functions to generate the same basic
layout for all output devices and adapts the object size based on the dis-
play characteristic to guarantee the visibility of all elements. The second
mapping step introduces additional visual cues to enhance the effective-
ness of the visual encoding for different output devices. To demonstrate
the Two-Step-Mapping we apply this concept to scatter plots presenting
cluster data.
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1 Introduction

Smart environments integrate a multitude of interconnected devices to facili-
tate a pro-active assistance for multi-user scenarios. Those ensembles consist
of stationary devices such as desktop devices, projectors, motion trackers, or
wall-sized displays, but also aim to integrate personal devices of users such as
laptops, PDAs and smart phones. Smart meeting rooms are a typical application
scenario of smart environments [1] serving as a basis to communicate information
to facilitate discussions and to support decisions.

However, in [2] the challenge of Display Scalability has been described dealing
with the consistent visual encoding of the same data on different output devices
such as smart phones, laptops or large public displays (see figure 1). The problem
to be solved here is related to this challenge and in particular aims to avoid the
following problems:

— On small displays, visual clutter may occur and
— on large public displays connectivity information can be lost.

This means, simultaneously presenting the same information on different
output devices is a challenging task to be solved in smart environments.

In this paper, we address the problem of Display Scalability through ex-
tending the classical visual mapping to visual variables (which we call primary
mapping) to a redundant encoding of data (which we call secondary mapping).

We will demonstrate this approach using the example of presenting clustered
data in scatter plot displays.

The paper is organized as follows: First we briefly reflect the state of the art
in Section 2. In Section 3 we introduce the two-step mapping strategy and exem-
plarily show the application to scatter plots presenting classified data. Section
4 describes a short user-study and Section 5 concludes and gives an outlook on
further work.

2 Related Work

Visual representations have been adapted in multiple ways to address differ-
ent data properties (e.g., [3,4]), different visualization goals (e.g., [5,6]) and
different user capabilities (see [7]). However, the generation of proper visual rep-
resentations in consideration of heterogeneous multi-displays, as they are found
in smart environments, has not been sufficiently examined. Such environments
are generally heterogeneous ensembles, that change over time (joining and leav-
ing devices) and facilitate collaborative work (e.g., in [8,9]). The specifically
developed, rare visualization approaches for those ensembles typically combine
the individual displays into a large single one. Thus, current research mainly
addresses the problems of sharing content synchronously from multiple devices
on multiple displays and sharing the corresponding multiple interactions on the
devices (e.g., [9,10]). Other research projects in the field of multi-desktop en-
vironments study the effectiveness of such environments (e.g., [11]) or of single
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display types (e.g., [12]). However, they do not provide a strategy on how to
adapt the same visual representation to different displays.

The adaptation of graphical representations according to given output de-
vices, in particular considering the reduced display size of mobile devices, has
been addressed extensively in different fields (e.g., for maps [13], for 3D-models
[14], for images [15]). The underlying techniques — scaling, aggregation, interpo-
lation, progression and sampling — are also applied in the field of information
visualization (e.g., [16-18]). However, visual clutter remains the main problem.
It appears if displaying too much data on a screen with limited space [19]. On
the other hand, enlarging the display size may pull the visual objects apart and
hence, features such as data density may be misinterpreted [20,17]. To score
the perceivable visual features and goodness of a visualization and thus, to ad-
dress these problems, different measures have been introduced (see [21] for an
overview).

Such measures in combination with appropriate thresholds, are used either
to reduce the amount of displayed data (e.g., by sampling [17,18]), to simplify
the visual representation (e.g., the use of binning in [22,23]) or to determine an
appropriate level of progression [24]).

3 Two-Step Mapping

The mapping step specifies the visual encoding of data by defining visual ab-
stractions that can be graphically presented. That means visual abstractions
represent data through graphical objects specified by their geometry and ad-
ditional attributes describing the appearance of the objects. The choice of the
visual encoding has a huge impact on the effectiveness of conveying informa-
tion to the user. The mapping step is influenced by different constraints like the
characteristics of the data to be encoded, the capabilities of the human visual
system, the tasks at hand, but also the characteristics of the given output dis-
plays. Because of the diversity and complexity of constraints, many mapping
approaches consider one constraint only (typically the data characteristics). In
the case of considering output devices, the mapping primarily takes the limited
resources of mobile output devices into account, in particular the limited screen
size. However, to the best of our knowledge, no mapping strategies published
so far specifically addresses the requirements of simultaneously presenting the
same data on different displays.

This leads to two problems to be solved. First, in any case the visibility of
the elements to be displayed has to be guaranteed depending on the display
resolution and eye distance. Second, the capability of a human when working
with different display devices may vary significantly, influenced by nothing but
the human cognition (see e.g. [12]).

We address these issues by introducing a two-step mapping process. The
basic idea is to distinguish between primary and secondary mapping functions.
The primary mapping functions generate the basic visualization by realizing the
typical mapping step generating a specific visual representation. Additionally,
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the size of visual abstractions is adapted in such a way that visibility on different
display devices is guaranteed.

The secondary mapping functions define additional visual cues to redun-
dantly encode information and thus, improve the readability of visual represen-
tations in multi-display environments. To this end, the combination of primary
and secondary mapping functions preserves visibility and important properties of
visual abstractions, but also reflects the characteristics of heterogeneous output
devices.

3.1 Primary Mapping

The primary mapping corresponds to the classical mapping step of the visual-
ization pipeline. It generates the visual encoding of data according to the char-
acteristics of a given visualization technique. Thus, the primary mapping defines
the same basic layout for all displays.

The visibility of visual abstractions on different displays has to be ensured.
For this purpose, the size of graphics abstractions needs to be adjusted to a
well-defined minimal size to guarantee that objects are perceivable by the user.

The adaptation of the object sizes is based on the procedure for eye testing.
According to the ISO standard for visual acuity testing [EN ISO 8596:1996-
05], an object is distinguishable from the background and other objects and
hence, visible (assuming a visual acuity of 1.0), if the object covers at least 1 arc
minute of a humans visual angle. Thus, in contrast to [25] we don’t determine
the covered visual angle of an object. We assume that the object covered at least
1 arc minute (o = 1 arc minute) of a humans visual field. Hence, we calculate
the required size (s) of the object using a given viewing distance (d) by the use
of the law of sine:

s = dxtan(a) (1)

Furthermore, let r be the ppi (pixels per inch) of the specific display and s
the object size in inch, then p, the number of pixels, covered by the object, can
be determined by the following equation:

sxr<p (2)

Because of the discrete nature of the pixel space, p has to be adjusted upwards
to the next integer value to guarantee visible objects.

Note, the visual acuity is influenced by the lightness. Higher lightness would
increase and lower lightness would decrease the visual acuity. This was first
proven by Konig [26]. However, a light density between 160 and 320 cd/m?
has no significant influence on the visual acuity [27]. Furthermore, the light
density of a typical display is in this range and hence, this parameter need not
be specifically taken into account.

Using the typical viewing distances of [28], the required minimum object sizes
for different display classes can be pre-computed, and stored by a Look-up-Table.
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Based on this, the primary mapping step checks the size of the generated visual
abstractions and scales the visual output as necessary.

Since all visual abstractions are scaled in the same way, the visual attribute
size (e.g. as range [min, max]) can still be used to encode data.

3.2 Secondary Mapping

The secondary mapping step redundantly encodes data to improve the effective-
ness of visual representations on heterogeneous displays. In principle, all visual
attributes that have not been used by the primary mapping functions can be
applied to specify the secondary mapping step.

However, each visualization technique requires different visual encodings and
thus, different subsets of visual variables to define the primary mapping func-
tions. Furthermore, different tasks and output devices require specific encodings.
Hence, a general guideline for the design of secondary mapping functions can-
not be established. However, the functions have to be found with regard to the
applied visualization technique, the task at hand and the given output device.

3.3 Example: Adapting Scatter Plot Displays to different output
devices

Exemplarily, in this Section, we will show the application of the two-step map-
ping concept on scatter plots displaying classified data. The task to be supported
is detecting clusters simultaneously on large displays with sparse point distribu-
tion or on small displays with dense point regions.

Primary Mapping In our example, generating scatter plots, the primary map-
ping is defined by position (encoding data values) and color (class membership).
Thus, we specified two primary mapping functions p; and ps to define the basic
layout.

p1 maps data values onto positions
po maps class memberships to color (hue)

The primary mapping function p; generates the typical scatter plot display
by using position, whereas the primary mapping function po allows to distinguish
the classes, by mapping the cluster membership to color.

We encode class membership by color because Mackinley [29] ranked this
variable to be the second best for nominal data (best is position, which is already
used). We apply the color scale provided by Healey et. al. [30] that is proven
to be a very good color scale for the distinction of nominal data. However, for
gray-scale displays the variable value has to be used instead of hue.

To guarantee visibility of all dots for typical viewing distances we additionally
define the mapping function ps:

p3 defines the minimal dot size with regard to visibility constraints.

The size calculation is based on the formula described in 3.1.
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(a) primary mapping (b) primary + secondary at-
tribute orientation

(¢) primary + secondary at- (d) primary + secondary at-
tribute shape tribute connection

Fig. 2. Scatter plot showing identical data with the application of different mapping
functions. (a) shows the classical scatter plot using the primary mapping functions. In
(b), (c) and (d) additional secondary mapping functions have been applied; in (b) the
secondary mapping function so (orientation), in (c¢) the mapping function ss (shape)
and in (d) the mapping function s4 (connection).

Secondary Mapping For the definition of the secondary mapping functions
further appropriate visual variables have to be found to redundantly encode
the data, in this specific case the cluster membership. The question is, which
visual variables can be used. Our discussion is based on the classification of
visual variables by Bertin [31] (position, size, color, value, shape, orientation
and texture) and Mackinley [29] who introduced three further attributes: density,
connection and containment and replaced size by length & area & volume and
replaced orientation by angle & slope.

As described above, for redundant encoding of data in the secondary map-
ping appropriate visual variables have to be found. This procedure depends on
characteristics of the chosen visualization technique and the presented data. Us-
ing our example of redundant encoding of cluster membership in scatter plots,
the following illustrates the individual steps of this procedure:
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The first four of the seven visual variables provided by Bertin [31] — position,
size, and color (or value for grayscale displays) — are utilized by the primary
mapping functions and thus, cannot be used by secondary mapping functions.
The visual variable texture should also be excluded, since the dot size is ad-
justed in such a way that the visibility is ensured, but it cannot be assumed that
the dot size also ensures the representation of readily identifiable textures. The
same holds true for the attribute containment. The chosen dot size guarantees
visibility, but does not allow for further encodings. Also, a further refinement
of visual variables as suggested by Mackinley does not provide new opportuni-
ties for our purposes. Readily identifying both (length and area) of small dots
would be very difficult. Hence, only the visual variables shape and orientation of
Bertin’s list and the variable connection of Mackinley’s extension can be used as
additional variables to adjust the scatter plot display. Based on this discussion,
we introduce three additional secondary mapping functions:

1. s1: maps classes onto orientation. s; is realized by replacing the dots repre-
senting the data in the scatterplot by little bars. The cluster membership is
mapped onto a rotation angle () with v¢[0°,90°] and the bars are rotated
accordingly. To determine the required angle, the 90° interval is divided
equidistantly with regard to the number of existing clusters (see figure 2(b)).
Thus, otherwise overplotted dots that do not belong to the same cluster can
be distinguished by their differently rotated bars. Here, the minimum size
for an object, calculated in the primary mapping, is mapped to the width of
a bar.

2. sy: maps classes onto shape. For so the dots are replaced by regular shapes
(all sides have the same length and all angles are the same). Here, the clus-
ter membership is mapped onto the number of vertices. The data value is
represented by the center of the shape (see figure 2(c)). The minimum size
is mapped to the diameter of the surrounding circle of a shape.

3. s3: maps classes onto connection. s3 connects the dots of one cluster with the
centroid by lines. Therefore, first the centroid of a cluster has to be found by
calculating the center of the cluster (Fmesg®min 4y, Ymertmin 4 g,
and determining the data point with the least Euclidian distance to the
center. Then, the other points are linked to the centroid by drawing a straight
line (see figure 2(d)). Here, the minimum size is mapped to the size of the
dots.

In the next Section we will describe our user study to demonstrate that sec-
ondary mapping functions like s1, so and s3 improve the effectiveness of scatter
plot displays on heterogeneous displays. The next section shows that this sec-
ondary mapping step remarkable improves the perception of clustered data on
heterogeneous displays.
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4 User Study

This user study aims to study how the proposed Two-Step Mapping to present
clusters in scatter plots addresses Display Scalability in our smart room envi-
ronment. To evaluate the Two-Step Mapping strategy, we determine the success
rate of connection, shape and orientation for a small, medium and large dis-
play device. The success rate is an important issue of Display Scalability and we
define it as the ratio of correct answers to all answers.

We compare the success rates of the Two-Step Mapping strategy against the
well-known visual mapping of scatter plots which directly corresponds to our
primary mapping. In this section, we will present preliminary results of our user
study that support our research hypotheses:

1. H1: Encodings with secondary mapping perform better on the used display
devices in comparison with a single primary mapping of clusters.

2. H2: Display device affects the success rate, i.e., the success rate of the dif-
ferent secondary mappings varies across the used small, medium, and large
display device.

4.1 Setup

Technical base: The class of large displays is represented by a 617 TV (see
figure 3(b)) with a resolution of 192021080 pixels (36 ppi (pixels per inch)).
The medium displays are represented by a 24” Desktop display with a res-
olution of 192021200 pixels (94 ppi) presenting the samples in a 500z500
pixel window. The small displays are represented by an Apple iPod touch
(see figure 3(a)) 1G with 3.5” and a resolution of 3202480 pixels (163 ppi).
The viewing distances have been fixed with regards to [28]. Thus, the par-
ticipants were placed 3m in front of the large TV, 70cm from the desktop
monitor and 40cm from the iPod touch.

(a) TV with additional at- (b) iPod touch with additional
tribute connection attribute orientation

Fig. 3. Demonstration of two typical views with applied enhanced mapping.
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Data characteristics: The dataset to be tested was generated using a mix-
ture of normal distributions: First, the number of clusters (4 to 6) is set for
each scatter plot. We experienced that the success rate decreases with the
increasing number of clusters for scatter plots on desktop devices; the task
to detect clusters in scatter plots becomes difficult for many clusters. Since
our aim is to study the relationship between success rate and display device,
we restricted the the number of clusters between 4 and 6. The (z,y) coordi-
nates of the centroids of the clusters are drawn from the mixture of normal
distributions. Data points are placed around each centroid by considering
the centroid as the mean of a normal distribution. To ensure comparability,
each view includes a constant number of 200 data points assigned to each
cluster.

Participants: The user group was composed of 23 non-visualization experts (6
female and 17 male) with an average age of about 34, a minimum age of 18
and a maximum age of 60 years.

Task: The task for the participants was to state the number of clusters that can
be observed in a scatter plot display. The time for each scatter plot display
was restricted to 15 seconds.

Briefing and Execution: To brief the participants, test-samples were shown
and described in detail. Then, participants were shown scatter plots with 20
different data samples, 5 samples per visual encoding (without additional
visual cues, with connection, with orientation and with shape). To avoid a
learning effect, the sequence of the display devices, the secondary mappings,
and the number of clusters were randomly chosen for each participant.

4.2 Results

H1: The primary mapping leads to success rates between 63.5% for large dis-
plays and 80.0% for medium size displays. The particular low success rate for
large displays might be caused by a low density, i.e., the ratio of data points
to screen space is low. The secondary mapping clearly improves the success
rates in comparison with the primary mapping: for small displays in every
case, for medium and large displays in two of three cases in comparison to
color (see also 1).

H2: Table 1 shows that display size affects the success rate of the different map-
pings. Whereas, connection always outperforms the other mappings, table 1
shows significant differences for the success rate of the secondary mappings.
However, the good performance of connection was a surprising finding for
us since the secondary mapping to connection seems to be related to the
corresponding Gestalt law which seems to maintain high success rates on all
display sizes.
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mapping small display|medium display|large display
connection 89.6% 87% 97.4%

shape 87.7% 73% 80%
orientation 86.9% 80.8% 61.7%

only primary mapping|75.6% 80% 63.5%

Table 1. Success rate of the user-study for the different displays and mappings.

5 Conclusion and Future work

In this paper we introduced a two-step mapping strategy distinguishing between
primary and secondary mapping functions. The primary mapping defines the
same basic representation for all displays additionally taking the display charac-
teristics and the typical viewing distances into account. The secondary mapping
functions adapt the visual representation in terms of different output devices.

We also applied the two-step-mapping to map based visualizations to redun-
dantly encode data. Here, the graphical elements are area objects, allowing to
use another set of additional visual attributes (e.g. texture). Furthermore, we are
planing to extend this mapping to further techniques (e.g. Parallel Coordinates
and Treemaps).

An interesting topic for future work is the investigation of further visual
variables, e.g. provided by NPR techniques. An interesting topic for further
investigations could be related to real viewing distances that can in principle be
provided by our smart lab.
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