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Abstract

In modeling and rendering of complex procedural terrains the extraction of isosurfaces is an important part. In
this paper we introduce an approach to generate high-quality isosurfaces from regular grids at interactive frame
rates. The surface extraction is a variation of Dual Marching Cubes and designed as a set of well-balanced
parallel computation kernels. In contrast to a straightforward parallelization we generate a quadrilateral mesh
with full connectivity information and 1-ring vertex neighborhood. We use this information to smooth the extracted
mesh and to approximate the smooth subdivision surface for detail tessellation. Both improve the visual fidelity
when modeling procedural terrains interactively. Moreover, our extraction approach is generally applicable, for

example in the field of volume visualization.

Categories and Subject Descriptors (according to ACM CCS):

Generation—Display Algorithms

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction

The procedural modeling of complex terrains (including 3D
features) is often based on isosurfaces (cf. [Gei07, BFO*07])
as they are not restricted to any initially defined surface
topology. Isosurfaces are implicitly defined. That means that
the function f : R* 5 R in conjunction with an isovalue
o implicitly defines the surface S¢ = {x € R | f(x) = a}.
However, for the rendering process we usually need an ex-
plicit surface representation.

Although, rendering of such surfaces is common in differ-
ent domains e.g. volume visualization, existing surface ex-
traction algorithms either focus on performance or on mesh
quality. Extraction of high-quality meshes requires com-
plex computations. Thus, most of these algorithms are not
suitable for interactive applications. In contrast, algorithms
focusing on performance make compromises with regard
to quality. This might cause visual artifacts or might lead
to meshes that are unsuitable for further processing, e.g.
smoothing or detail tessellation.

However, for the generation, editing and rendering of pro-
cedural content (e.g. modeling complex terrains) we need
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both high quality and high performance. That means we have
to address the following aspects:

e Manifold surfaces and connectivity information (includ-
ing /-ring neighborhood) are required to apply geometric
processing algorithms and to export the mesh to external
modeling tools.

e Interactive frame rates are needed for quick interaction-
feedback cycles when changing model parameters (e.g.
noise parameter) or when adjusting the isovalue.

e A high-quality surface mesh (i.e. well-shaped and well-
distributed quadrilaterals) is needed to minimize visual
artifacts.

To fulfill these requirements we propose a novel processing
pipeline with well-balanced parallel computational kernels
and different lookup tables. Our solution integrates steps to
extract the isosurface, smooth the resulting mesh, and apply
detail tessellation to enhance visual fidelity.

The extraction of manifold surfaces is based on Dual
Marching Cubes introduced by Nielson [Nie0O4]. We ex-
tend this approach and propose a novel parallel processing
scheme. In contrast to straightforward parallelizations, we
generate a quadrilateral mesh with full connectivity infor-
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Figure 1: A complex terrain surface extracted in 12ms with the proposed algorithm. We improve the mesh quality by applying
the surface diffusion flow and tangent movement (left). For the rendering the 1-ring vertex neighbors are used to approximate
the Catmull Clark subdivision surface as proposed in [LS08]. Displacement mapping enhances the visual fidelity (right).

mation and /-ring vertex neighborhood.

To adapt to sharp features we present an alternative vertex re-
location solution based on the Quadric Error Metric [GH97]
(QEM) which is computationally efficient.

For smoothing we use a combination of the surface diffusion
flow and tangent movement. For this purpose, we need the 1-
ring vertex neighbors, which are usually gathered by an ad-
ditional step that analyzes the mesh. Our solution is different
though, as it gathers the 1-ring neighbors directly during the
surface extraction. In this way, smoothing operations can be
integrated with the surface extraction.

Detail tessellation is applied by approximating the smooth
subdivision surfaces (e.g. bicubic patches) and displacement
mapping. Since we provide the 1-ring neighbors, such a high
order patch representation can be easily generated.

Our solution allows for modeling and visualizing proce-
dural complex terrains interactively at a high visual fidelity
(cf. Figure 1). The solution is general and might be used in
other application domains as well.

In the following section we provide related work and dis-
cuss the implications with regard to algorithm requirements.
In Section 3 we describe our general approach followed by a
detailed description of our novel surface extraction pipeline
(see Section 4). In Section 5 we discuss the results. We con-
clude our work in Section 6 and provide ideas for future
work.

2. Releated Work

The extraction of isosurfaces has been a research topic for
decades. Usually we distinguish between primal and dual
contouring methods (cf. [SWO04]). Primal methods generate
a polygonized surface by connecting intersection points of
the isosurface with a structured grid. Dual methods generate
the topologically dual of primal surfaces. Both methods have
been implemented successfully on recent graphics hardware.

Primal contouring methods are often equated with the
Marching Cubes (MC) algorithm (see [LC87]) the quasi
standard algorithm for polygonizing implicit surfaces. The
algorithm is general, robust and simple and forms the basis
for many other widely used algorithms (cf. [Nie03, NY06]).
Since some of the 15 canonical configurations are ambigu-
ous, the original algorithm possibly generates non-manifold
surfaces. Nielson and Hamann address this problem in
[NH91] and resolve the ambiguities by enhancing the clas-
sification to 23 canonical cell configurations. In contrast to
that, other MC derivatives e.g. Marching Tetrahedron (MT)
do not have topological ambiguities (see [NB93]). Nonethe-
less, MC surfaces lack sharp features and quality. These is-
sues have been examined thoroughly over past decades. For
instance, the Extended Marching Cubes [KBSS01] detects
sharp features by taking the normals into account. Labsik et
al. [LHMGO2] rely on a hierarchical approach to improve
the mesh quality. However, such methods require signifi-
cantly more computations in contrast to the original MC
(see [NYO06])).

Dual contouring methods: locate vertices within a cell and
connect them with adjacent ones. By doing so, dual meth-
ods reproduce sharp features and tend to avoid the poorly
shaped triangles that are often appearing in MC surfaces.
The Dual Contouring [JLSWO02] (DC) algorithm uses a oc-
tree decomposition of the domain. To consider sharp fea-
tures, vertices are relocated in an octree cell by minimiz-
ing the Quadratic Error Function (QEF). With a set of
<point,normal> pairs (p;,n;) corresponding to the intersec-
tion of the isosurface with the octree cell the QEF is defined
as: E(v) = ¥;[n/ (v—p;)]%. In matrix form a solution is
found by using the pseudoinverse of a n X 3 matrix (e.g. QR
decomposition) where 7 is the number of intersection points
(cf. [JLSWO2]). For more information we refer to [SW02].

Just as the original MC, the DC possibly produces non-
manifold surfaces. Schaefer et al. solve this problem
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by using a topology-preserving vertex clustering algo-
rithm [SJWO07], whereas [ZHKO04] represent isosurfaces by
an enhanced cell representation.

The Dual Marching Cubes (DMC) algorithm proposed by
Nielson [Nie04] always generates topological manifold sur-
faces. Nielson unifies MC surface fragments to polygonal
patches where the vertices of these patches are located on
the lattice edges. Since each lattice edge is adjacent to four
cells, each patch vertex is touched by four patches. The dual
surface is now defined (1) by replacing each patch by a ver-
tex and (2) by replacing each patch vertex by a quadrilat-
eral face. In contrast to DC, this approach results in a clas-
sification of 23 cell configurations that are dual to the 23
MC configurations required for extracting topological man-
ifolds. Each configuration may create up to 4 vertices and
the connectivity is well defined via the lattice edges. More
precisely, when a lattice edge intersects the isosurface, this
edge is associated with four vertices forming a quadrilat-
eral surface fragment. In [SITWO07] this property is exploit to
define the QEF. We rely on this algorithm for two reasons:
First, the algorithm generates manifold surfaces. Second, the
configuration-based approach provides many advantages for
parallelization.

Other contouring methods: In [SWO04] both a primal
method and a dual method are used in combination. First,
a grid dual to the primal grid (octree) is generated. Vertices
of this dual grid are located at features of the implicit sur-
face. In a second step MC is applied to the dual grid to create
a high-quality surface mesh.

Advancing front algorithms have also been applied to extract
isosurfaces [B1o94, Har98]. In [SSS06] a so-called guidance
field is computed from the implicit surface which drives the
advancing front algorithm. The algorithm produces high-
quality smooth triangle meshes. Even though many parts
of the algorithm have been implemented in parallel this ap-
proach is far away from interactive rates.

GPU-based variations: Both MC and DC provide real-
time capabilities on programmable graphics hardware (cf.
[TSDO7, Gei07, SDC09, LMS11]). In sum, such implemen-
tations (a) lack mesh quality, (b) provide topology ambi-
guities and (c) generate a "primitive soup". Especially the
last point causes huge memory and computational overhead
since vertices are generated and stored multiple times. This
also makes such meshes unsuitable for further geometric
processing and high order smooth surface approximations
(e.g. approximation of Catmull Clark surfaces [LSOS8]). Lo-
effler et al. [LMS11] take advantage of general purpose GPU
shaders and generate a mesh with connectivity information
for tiny parts of the volume. This procedure has two draw-
backs: (1) it does not generate a connected mesh for the
whole isosurface, and (2) due to the usage of Dual Contour-
ing it possibly generates non-manifold surfaces.
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Figure 2: Illustrates the overall modeling process.

3. General Approach

In this section we focus on the generation of smooth high-
quality isosurfaces. Our goal is the interactive modeling of
procedural complex terrains (with 3D features) at a high vi-
sual fidelity. Our solution relies on the following three prin-
ciple components (see Figure 2):

1. The model generation which samples the density func-
tion and analyzes the volume for further processing.

2. The surface extraction pipeline which generates the ex-
plicit isosurface representation.

3. The quality enhancement which improves the mesh qual-
ity and the visual fidelity.

During the modeling it is not necessary to pass through the
whole pipeline. For instance, it can be sufficient to only ad-
just the model parameters to generate a new model. Isovalue
changes though, merely affect the surface extraction and thus
lead to new shapes. By doing so the modeling process is ac-
celerated. Nonetheless, achieving interactivity is not a triv-
ial task and requires well-matched components. In addition,
each component puts several demands on previous compo-
nents. In the following we briefly describe the components
and discuss design choices.

The first component is the model generation. We sample
the values on a regular grid because (a) in advance we have
no information about the surface (b) the sampling can be
efficiently implemented on parallel hardware and (c) most
parallel surface extraction algorithms are optimized for this
representation. The sampling is general. However, for our
purposes we define the density function f(x) as a combina-
tion of different types of noise and specific terrain functions
as described in [Gei07, GTO07].

Interactivity requires the efficient processing of the volume.
Hence, we need a method to select relevant parts of the vol-
ume efficiently. We rely on a block-based acceleration struc-
ture. We subdivide the volume into blocks with a fixed num-
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ber of cells. For each block we compute the min and max
density values by a parallel reduction algorithm. This accel-
eration structure is simple but (a) analysis and selection can
be efficiently implemented in parallel and (b) processing of
single blocks can be mapped well to the parallel processing
concept (i.e. in analogy to thread groups).

The second component - the surface extraction pipeline -
selects relevant blocks and extracts the isosurface. To avoid
visual artifacts and unequally distributed details we need
well-shaped and well-distributed primitives. Hence, we need
to smooth the extracted surface mesh in the last component.
Applying smoothing operators requires (1) a manifold sur-
face, (2) connectivity information, and (3) the 1-ring ver-
tex neighborhood. Usually, a parallel surface extraction al-
gorithm does not fulfill these requirements. This is caused
by the parallel processing itself. In parallel all cells are ana-
lyzed and surface fragments are produced based on cell char-
acteristics. This results in redundant computations and, more
importantly, it results in unconnected primitives. This is not
suitable for our approach.

We need a manifold surface. We, therefore, rely on Dual
Marching Cubes byNielson [Nie04]. The algorithm fits well
our requirements in terms of quality, but not in terms of inter-
activity. We developed an extended version of DMC that fol-
lows a novel parallel processing scheme. Our multi-staged
processing pipeline generates a quadrilateral surface mesh
with full connectivity information. This is possible due to a
smart combination of static and dynamic look-up tables as
well as parallel reduction algorithms. Section 4 is devoted to
the pipeline in detail.

Usually, 1-ring neighbors are not supplied by surface extrac-
tion algorithms. In fact, it demands an extensive analysis of
the mesh which is not suitable for interactive applications.
We solve this problem by precomputing adjacency informa-
tion for each cell configuration. During the surface extrac-
tion we evaluate this information to gather the 1-ring neigh-
borhood directly.

In many application domains surface extraction needs to re-
sponse to sharp features. Usually, features extraction is car-
ried out by minimizing the quadric error function (cf. Sec-
tion 2). Due to the limited register count on recent parallel
hardware this complex computation leads to performance
penalties. Our solution is based on the quadric error met-
ric [GH97]. In comparison to common approaches, our algo-
rithm does not achieve the same quality but is less computa-
tion complex. Since we merely want to preserve the volume
of the terrain, this is not problematic.

The last component - quality enhancement - (optionally)
applies smoothing operators and detail tessellation to the sur-
face mesh. Usually, in order to smooth a mesh, a discrete
laplace operator is used (cf. [WMKGOS]). For quadrilateral
meshes Zhang et al. [ZHK04] proposes (a) the use of surface
diffuse flow for smoothing and (b) to add tangent movement
for quality improvements. Due to the mesh representation,
both can be implemented efficiently in parallel.

For detail tessellation we follow the real-time capable ap-
proach of Loop and Schaefer [LSO8] and approximate the
smooth Catmull Clark subdivision surface with bicubic
patches in combination with displacement maps (via tessel-
lation shader). For the displacement maps and the texture
maps we use tri-planar texture mapping [Gei07, GT07]. Fig-
ure 5 shows some results.

Our main contribution is the novel surface extraction
pipeline. The different stages and a detailed description of
the processing scheme is discussed in the following Section.

4. Parallel Dual Marching Cube on Regular Grids

The surface extraction pipeline can be outlined as follows
(cf. Figure 2): In a first step - the Block Selection - we se-
lect all relevant blocks in the volume. In the Classification
we determine the cell case for all cells with regard to the
isovalue. We use this information in subsequent stages to ef-
ficiently gather per cell information from static lookup ta-
bles. Then, the Indexing follows. Here we count the number
of generated vertices/faces. The total count is used to allo-
cate the required memory for the mesh representation. To
produce a connected mesh we need to map relevant cells to
unique locations in the mesh buffers. For this purpose we
use dynamic lookup tables. The tables store a unique ver-
tex/face index for each relevant cell. As a result we can re-
fer to vertices/faces by the cell index. At this point all in-
formation has been gathered to produce the final mesh. To
ensure a workload efficient generation of vertices and faces
we need to process only relevant cells. These cells are se-
lected in the Cell Section stage. As a result, we switch from
a block-based processing to a cell-based processing for the
subsequent stages. During the Mesh Generation we generate
the vertex attributes, gather the 1-ring vertex neighbors, and
generate the faces.

In the following we first introduce the terminology and
some basic definitions in Section 4.1. The static lookup ta-
bles are described in the Section 4.2 and the dynamic lookup
tables in Section 4.3. The different stages are described in
detail in Section 4.4. In Section 4.5 we discuss our QEM-
based vertex relocation approach.

4.1. Terminology

According to [Nie0O4] we define the input for our al-
gorithm as a regular grid, i.e. a three dimensional grid
L = {(ilx, jOy,kDNz) i = 0,...,Ny;j = 0,...,Ny;k =
0,...,N;} of values: v; j x = f(iAx, jAy,k/Az) representing
a uniformly sampled function f : R? — R. The normal at
a particular point is equal to the gradient direction, which
is defined by the partial derivation: Vf = (3{%—{,%—5)
A (cubic) cell (i,j,k) is defined by the diagonal from
(iDx, jAy, kAz) to ([i + 1] Ax, [j+ 1Ay, [k + 1]Az). With
respect to an isovalue o, we can classify the grid points
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Vi jk > @ as inside and the grid points v; j; <= O as out-
side. This classification yields 28 possible cases grouped into
23 canonical configurations for a single cell. These 23 con-
figurations provide the vertices which need to be generated
for a particular case (see [Nie04]). We denote these vertices
as cell vertices. Each cell vertex is associated with a unique
set of edges intersecting the isosurface. Interior edges are
shared by four adjacent cells. Consequently, an edge is as-
sociated with exactly four vertices forming a quadrilateral
(cf. [Nie0O4]). Intersection of a cell edge and the isosurface
can be determined by an appropriate root finding algorithm.
We denote these intersection points and the corresponding
normals as pairs (p;,n;).

The generated mesh is represented by two buffers resid-
ing in the global memory of the processing device (GPU).
The vertex buffer stores the attributes for each vertex. The
face buffer stores the quadrilateral faces by indexing the ver-
tex buffer. Both buffers are tightly packed. Stage execution
on the processing device as well as memory allocations are
invoked by the host (CPU).

4.2. Static Lookup Tables

To improve the performance we precompute particular cell
information for the different cell cases. This information is
provided by the following static lookup tables:

Vertex-Count Table: maps a cell case to the particular
number of cell vertices.

Vertex-Edges Table: maps a cell case and a particular cell
vertex to its unique set of associated active edges. Such an
edge set can be efficiently represented by a 12 bit vector
(1 bit per edge). We use the table to determine the inter-
section points of a cell with the isosurface.

Edge-Vertex Table: maps a cell case and a particular edge
to its associated cell vertex. We encode this association
into a 24 bit vector with 2 bits per edge to identify the
cell vertex. We use this table to get the cell vertex for a
particular edge.

Vertex-Adjacencies Table: maps a cell case and a particu-
lar cell vertex to a set of tuples (Vyx,e) identifying the
adjacent vertices with V_y, the offset to the adjacent cell
and e the associated edge. The tuples are sorted in 1-ring
order.

Face Table: maps a cell case to a set of faces which are
generated by a cell (see Section 4.4).

The first three tables can be directly derived from the March-
ing Cubes tables. The construction of the vertex-adjacencies
table requires more effort and can be summarized as follows:
For each possible case and each particular cell vertex we it-
erate through the set of intersecting edges. For each edge
we collect the adjacent vertices building a quadrilateral. Ver-
tices are declared in the form (V.y,e) where V_, specifies
the offset to the neighbor cell and e the associated edge. We
sort the quadrilaterals in such a way that adjacent ones are in
successive order and collect the 1-ring from that sequence.
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4.3. Dynamic Lookup Tables

Communication between stages is carried out by a set of dy-
namic lookup tables, i.e. three dimensional arrays. Stages
can read or write data to these tables. Usually, our tables
provide cell related information and thus have a dimension
of (Nx —1) x (Ny —1) x (N; — 1). The tables are essential
to uncouple the different stages. For our processing pipeline
we rely on the following two tables:

Case Table: provides for each cell in the volume the corre-
sponding cell case. This table is filled in the classification
stage and utilized in all subsequent stages.

Index Table: provides for each cell in the volume the corre-
sponding index of the first face and vertex with respect to
the face/vertex buffer. We generate this table in the index-
ing stage. The table allows to identify cell related vertices
and faces in the mesh buffers. For a cell (i, j, k) the asso-
ciated index I; j; (from the index table) and the x-th cell
vertex, we define the location of that vertex in the vertex
buffer as: I; ; ; +x. I; j x is generated by an walk over all
cells (see Section 4.4) and refers to the first vertex which
is generated by the cell (i, j, k). Indices for the face buffer
are computed analogously.

The tables double the memory effort with regard to the
volume, but in this way mesh quality as well as interactive
frame rates are ensured. Moreover, the overhead can be min-
imized by virtualizing the access and only allocate memory
for relevant parts of the volume (cf. [M*08]).

4.4. Pipeline Stages

Block Selection: From the model generation (see Section
3) we get a block-based decomposition of the volume and
the min and max density for each block. First, we mark all
relevant blocks as selected by simply evaluate the condition:
(min <= isovalue < max). We gather the selected blocks
by storing the corresponding block indices in a appropriate
buffer. Both is performed in parallel. The resulting buffer
acts as input for the classification.

Classification: We determines for each cell i, j, k the con-
figuration case by inspecting the 8 corner values. The par-
ticular cases are stored in the case table (cf. Section 4.3). To
reduce value fetches we map one block to one thread group
and load the grid values for this block into the low latency
local memory before analyzing the cells.

Indexing: The total count and the mapping can be ef-
ficiently realized by a parallel all-prefix-sum (aka scan)
algorithm [SHGO8]. A scan transforms an array A =
{ag,...,a,_1} to an array A’ = {I,aq,(ag D ay),...,(ap ®
a1 ®...Da,—»)} where [ is the identity of the binary asso-
ciative operator @. The transformed array A’ represents the
mapping to the buffers. The total buffer sizes are given by
summing the last element of A and A’. The total count is
transferred to the host which allocates the mesh buffers.
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0000
0001: (Vogo, )y (Voror 4), (Vizor 0)4 (Vieor 2)
0010: (Vogor 9)r (Vioor 1)y (Viozr 3)s (Voorr 7)
0011: (Vooor 6)r (Voror 4), (Vizor 0), (Vieor 2) &
) (Vogor 9)r (Vioor 1), (Vioa, 3), (Vooz, 7)
0100: (Vooos 11) s (Voo1,10), (Vo11, 8) s (Vor0, 9)
0101 Vooor 6)r (Voror 4), (Vizo,r 0), (Vioor 2) &
N (Vogor 11) » (Voo1,10) , (Vo1z, 8), (Voro, 9)
0110: (Vooor 9)r (Vicor 1), (Vior, 3)s (Voorr 7) &
~ (Vogor 11) 4 (Voo1,10) ; (Vo11, 8), (Voror 9)
0111: (Vooor 6)r (Voror 4), (Vizor 0), (Vioor 2) &
(Vooor )¢ (Vicor 1), (Vioa, 3) s (Voorr 7) &
. (Vooor 11) 4 (Voo1,10) , (Vo11, 8) 4 (Voior 9)
1000: (Vooor 6) s (Vicor 2)s (Vizer 0), (Vor0r 4) &
(Vooor 5) s (Voo1r 7)s (Vioa, 3) s (Vioor 1) &
(Vooor 11) y (Voo1,10) , (Vo11, 8), (Voro, 9)
(Vooor 11) 4y (Vor0r 9) s (Vo11, 8) s (Voo1,10) &
(Vooor S) s (Moorr 7Yy (Vioa, 3) s (Vicor 1)
(Vooor 11) » (Wor0r 9) s (Vo11, 8) s (Voo1,10) &
(VOOOI 6) r (Vloo: 2) [4 (VIIOI O) r (V01o: 4)
(Vooor 11) 4y (Wor0r 9) s (Vo11, 8), (Voo1,10)
(Vooor 5) s (Moo1r 7Yy (Vioa, 3) s (Vicor 1) &
(VOOOI 6) r (VIOOI 2) r (VIIDI 0) r (V01o: 4)
(Vooor 5) s (Moorr 7Yy (Vioa, 3)s (Vicor 1)
(Vooor 6) s (Vioor 2) s (Vizor 0)y (Voror 4)

Figure 3: The face table provides the quadrilateral faces
that need to be generated for the 4 classified corner values
(cell-case is marked red). A tuple (Vyx,e) identifies the off-
set to the adjacent cell and the corresponding (local) edge.

Cell Selection: During indexing we count the number of
relevant cells and compute successive indices for these cells.
We allocate an appropriate buffer and write the indices
(i, j, k) of relevant cells to this buffer. This buffer is passed to
the mesh generation process. As a consequence, we switch
from a block-based to a cell-based processing. This signifi-
cantly accelerates the mesh generation.

Mesh Generation: Mesh generation is carried out in two
phases. In the first phase we determine the vertex position.
For each cell we relocate the vertices as describe in Section
4.5. The storage location for the vertices in the mesh buffers
are determined via the dynamic lookup tables (see Section
4.3). The 1-ring neighbors are gathered by using the vertex-
adjacencies table (see Section 4.2).

The second phase is the face generation which rely on the
parallel processing scheme of [SDCO09]. Each cell generates
a particular set of faces. Each grid point L; ; has exactly
three unique edges (x, y, and z axis). For a cell this means
that we choose three edges sharing the same origin. Three
edges result in four grid values to be classified and 16 possi-
ble configurations. Also, an edge intersecting the isosurface
generates one quadrilateral face. Based on this considera-
tion Schmitz et al. propose a face table for Dual Contouring
where the entries refer to adjacent cells. In our case, how-
ever, a cell can contain more than one vertex. We, thus, need
to specify a particular cell vertex. Our vertex-edges table
provides for each cell vertex a associated set of edges (see
Section 4.2). Yet, this association is local only. Means that
for an edge e in cell i, j,k we need to find the corresponding

Figure 4: Close-up of the isosurface defined by the intersec-
tion of a cube and sphere. The images illustrate the results
when minimizing the QEF using (left) the pseudoinverse and
(middle) QEM. Due to our supporting planes (right) QEM
minimization is stable and produces accurate results.

edge ¢’ in the adjacent cell. This correspondence is provided
by our extended face table (see Figure 3).

The global index of the vertex identified by the tuple
(Vzyx, ) is resolved as follows: We fetch the case of the ad-
jacent cell Vyx (case table) and use that case to get the index
of the cell vertex associated with the edge e (edge-vertex ta-
ble). Then, we retrieve the vertex index from the dynamic
lookup tables as described in Section 4.3.

4.5. Vertex Relocation

There exist a couple of techniques for positioning a ver-
tex. For sharp features, vertices are relocated at the min-
imizer of the QEF (cf. 2). Our solution is based on the
Quadric Error Metric (QEM) [GH97] which represents the
QEF as a sum of individual plane quadrics. Given a plane
nv+d=0a quadric Q is written in its fundamental form
as: Q(v) = v Av+2bT v+ ¢ with A = nn” a 3 x 3 matrix,
b = dn a three dimensional vector and ¢ = d” a scalar value.
The minimizer is given by ¥ = —A"p. Although QEM is
computational more efficient in contrast to other QEF solver
(cf. [SWO02]) we need to handle numerical instabilities (see
Figure 4).

We address this problem by adding supporting planes which
stabilize the minimization process. Given the intersection
point pairs (p;,n;) we first compute the quadric Q; repre-
senting the corresponding tangent planes and pmass the mass
point and its normal Ny, i.. the average of the intersec-
tion points. For each intersection point we construct a sup-

porting plane n! v + n! pmass = 0 with ny = ﬁ”ii‘ where
.
e= lg"“s%gf andn, = % Please note that this is only
'mass 1 'mass

true if e is non-zero and is not oriented in n, direction.

The set of supporting planes is expressed as quadric Qg. The
final vertex location is computed by minimizing against the
quadric Q = Qy + aQg with a € [0..1] scaling the contribu-
tion of the supporting planes. The factor controls the sharp-
ness of the features: small values produce relatively sharp
features but may introduce instability. For our tests we used
a factor of 0.5 which leads to good results.
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Figure 5: Illustrates snapshots of our interactive procedural complex terrain modeling prototype. Model generation, surface
extraction, smoothing and detail tessellation is performed on runtime.

5. Experimental Results and Discussion

Our approach has been prototypically implemented with
C++, OpenCL and OpenGL. The processing pipeline is en-
tirely realized as OpenCL program whereby each stage is
implemented as kernel. The GPU is used as processing de-
vice. All data, including the tables and the volume, are
hold entirely in the device memory. The mesh buffers are
provided by OpenGL. The smoothing is implemented in
OpenCL, too. Detail tessellation is realized via GLSL tes-
sellation shader. Our prototype allows for modeling com-
plex terrain isosurfaces (volumes). Noise parameters, blend-
ing factors, and isovalues can be changed interactively. Fig-
ure 5 gives some examples.

In the following we describe the results of a series of ex-

periments. All measurements were performed on a PC with
Intel Core 17-860 (4 GB main memory) and with an AMD
Radeon HD 5870 (2 GB memory) graphics adapter. For all
tested models we average the result of a sequence of 100 ex-
tractions. We measure the timings for each individual stage
and the total time for each iteration. In Table 1 we provide
the results for the different models. Interactivity is achieved
in all cases (> 25 extractions per second). Consequently, for
a typical modeling session (volume size: 512x512x128) we
are able to achieve interactive frame rates. Our analysis re-
veals that - independent from model size - the main extrac-
tion stages (classification, indexing, relocation and face gen-
eration) consume == 80% of the total time (cf. Figure 6). The
remaining time is used for block as well as cell selection. In
conjunction with the linear relationship between number of
vertices and extraction time we are able to conclude that the
processing is workload-efficient.
The timings for smoothing depend on the extracted surface
complexity. For moderate model sizes, the smoothing can be
applied directly after the extraction process. This has only a
slight impact on the overall performance. However, interac-
tivity is disturbed when having a high number of iterations
(> 10). The isosurfaces in Figure 5 have been smoothed with
5 iterations.

(© The Eurographics Association 2012.

Model #voxels o time #faces #verts
1.0M 4.8 52.5K 53.3K
Terrain 8.4M 048 11.6 | 217.7K | 219.5K
33.6M 279 | 601.2K | 603.2K
67.1M 33.1 | 885.2K | 888.7K
Bonsai 256° 0.15 | 23.7 | 471.3K | 481.9K
Engine 256° 0.19 | 16.0 | 307.8K | 307.7K

Table 1: Experimental results of our algorithm for different
test models. The table provides the size of the volume (#vox-
els), the isovalue O, the extraction time in ms, the number
of generated faces (#faces) and the number of relocated ver-
tices (#verts). Terrain sizes resulting in the given voxel count
are: 128 x 128 x 64, 256 x 256 x 128, 512 x 512 x 128 and
512 x 512 x 256.
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M Classification
W Indexing
M Cell Selection

Figure 6: Relative timings for the pipeline stages with re-
gard to the total time.

The approximation of the smooth subdivision surface and
the displacement mapping merely effects the rendering time.
This is based on the fact that bicubic patches are computed
in the tessellation shader. We have not implemented an adap-
tive tessellation scheme yet. Thus, for large models, we are
not able to guarantee interactivity when tessellation is turned
on.

The results confirm a good performance. But in contrast
to other GPU-based approaches our solution is much more
complex. Consequently, we will never measure up to such
techniques in terms of performance. However, in terms of
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quality we achieve very good results. For instance, the quad-
rangulation created by our technique requires no or negligi-
ble downstream processing.

We have also tested the algorithm with the main proces-
sor (CPU) as processing device. The result was disappoint-
ing. For example, the processing of the Engine data-set took
more than 3 seconds. Our first OpenMP-optimized prototype
took merely ~ 0.8s. The analysis of the stages shows that
indexing has consumed more that 70% of the total time. We
conclude that the indexing strategy (parallel scan) works fine
for GPU architectures, but not for CPUs.

6. Conclusion

We have presented a parallel surface extraction approach
which generates smooth high-quality isosurfaces. Our novel
parallel processing pipeline is based on Dual Marching
Cubes. We guarantee manifold surfaces, full connectivity
information and directly provide the 1-ring vertex neigh-
borhood. A feature preserving smoothing operator improves
mesh quality. Visual fidelity is enhanced by approximating
the smooth subdivision surface and by using displacement
mapping. As a result we are able to interactively generate
and display procedural terrains at a high visual quality.

We see the scope of future work by finding a generic solu-
tion which performs well on CPU and GPU architectures.
We have not addressed very large volumes or level of detail,
yet. Last, the usefulness of our approach for other domains,
e.g. volume visualization, needs to be investigated.
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